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New Representation Objects: Create actors and critics with improved
ease of use and flexibility

You can represent actor and critic functions using four new representation objects. These objects
improve ease of use, readability, and flexibility.

* rlValueRepresentation — State value critic, computed based on observations from the
environment.

* rlQValueRepresentation — State-action value critic, computed based on both actions and
observations from the environment.

* rlDeterministicActorRepresentation — Actor with deterministic actions, based on
observations from the environment.

* rlStochasticActorRepresentation — Actor with stochastic actions, based on observations
from the environment.

These objects all you to easily implement custom training loops for your own reinforcement learning
algorithms. For more information, see “Train Reinforcement Learning Policy Using Custom Training
Loop”.

Compatibility Considerations

The rlRepresentation function is no longer recommended. Use one of the four new objects
instead. For more information, see “rIRepresentation is not recommended” on page 1-3.

Continuous Action Spaces: Train AC, PG, and PPO agents in
environments with continuous action spaces

Previously, you could train AC, PG, and PPO agents only in environments with discrete action spaces.
Now, you can also train these agents in environments with continuous action spaces. For more
information see rlACAgent, rlPGAgent, rlPPOAgent, and “Create Policy and Value Function
Representations”.

Recurrent Neural Networks: Train DQN and PPO agents with recurrent
deep neural network policies and value functions

You can now train DQN and PPO agents using recurrent neural network policy and value function
representations. For more information, see rtDQNAgent, rlPPOAgent, and “Create Policy and Value
Function Representations”.

TD3 Agent: Create twin-delayed deep deterministic policy gradient
agents

The twin-delayed deep deterministic (TD3) algorithm is a state-of-the-art reinforcement learning
algorithm for continuous action spaces. It often exhibits better learning speed and performance
compared to deep deterministic policy gradient (DDPG) algorithms. For more information on TD3
agents, see “Twin-Delayed Deep Deterministic Policy Gradient Agents”. For more information on
creating TD3 agents, see rlTD3Agent and rlTD3AgentOptions.



Softplus Layer: Create deep neural network layer using the softplus
activation function

You can now use the new softplusLayer layer when creating deep neural networks. This layer
implements the softplus activation function Y = log(1 + eX), which ensures that the output is always
positive. This activation function is a smooth continuous version of reluLayer.

Parallel Processing: Improved memory usage and performance

For experience-based parallelization, off-policy agents now flush their experience buffer before
distributing them to the workers. Doing so mitigates memory issues when agents with large
observation spaces are trained using many workers. Additionally, the synchronous gradient algorithm
has been numerically improved, and the overhead for parallel training has been reduced.

Deep Network Designer: Scaling, quadratic, and softplus layers now
supported

Reinforcement Learning Toolbox custom layers, including the scalinglLayer, quadraticlLayer,
and softplusLayer, are now supported in the Deep Network Designer app.

New Examples: Train reinforcement learning agents for robotics and
imitation learning applications

This release includes the following new reference examples.
* “Train PPO Agent to Land Rocket” — Train a PPO agent to land a rocket in an environment with a
discrete action space.

* “Train DDPG Agent with Pretrained Actor Network” — Train a DDPG agent using an actor
network that has been previously trained using supervised learning.

* “Imitate Nonlinear MPC Controller for Flying Robot” — Train a deep neural network to imitate a
nonlinear MPC controller.

Functionality being removed or changed

rIRepresentation is not recommended
Still runs

rlRepresentation is not recommended. Depending on the type of representation being created,
use one of the following objects instead:

* rlValueRepresentation — State value critic, computed based on observations from the
environment.

* rlQValueRepresentation — State-action value critic, computed based on both actions and
observations from the environment.

* rlDeterministicActorRepresentation — Actor with deterministic actions, for continuous
action spaces, based on observations from the environment.

* rlStochasticActorRepresentation — Actor with stochastic actions, based on observations
from the environment.
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The following table shows some typical uses of the rlRepresentation function to create neural
network-based critics and actors, and how to update your code with one of the new objects instead.

Network-Based Representations: Not
Recommended

Network-Based Representations:
Recommended

rep =
rlRepresentation(net,obsInfo, 'Observat
ion',obsName), with net having only
observations as inputs, and a single scalar
output.

rep =
rlValueRepresentation(net,obsInfo, 'Obs
ervation',obsName). Use this syntax to create
a representation for a critic that does not require
action inputs, such as a critic for an rltACAgent
or rLPGAgent agent.

rep =
rlRepresentation(net,obsInfo,actInfo,"
Observation',obsName, 'Action',actName)
, with net having both observations and action as
inputs, and a single scalar output.

rep =
rlQValueRepresentation(net,obsInfo,act
Info, 'Observation',obsName, 'Action',ac
tName). Use this syntax to create a single-output
state-action value representation for a critic that
takes both observation and action as input, such
as a critic for an rlDQNAgent or rlDDPGAgent
agent.

rep =
rlRepresentation(net,obsInfo,actInfo, "
Observation',obsName, 'Action',actName)
, with net having observations as inputs and
actions as outputs, and actInfo defining a
continuous action space.

rep =
rlDeterministicActorRepresentation(net
,obsInfo,actInfo, 'Observation', obsName
, "Action',actName). Use this syntax to create
a deterministic actor representation for a
continuous action space.

rep =
rlRepresentation(net,obsInfo,actInfo,"
Observation',obsName, 'Action',actName)
, with net having observations as inputs and
actions as outputs, and actInfo defining a
discrete action space.

rep =
rlStochasticActorRepresentation(net,ob
sInfo,actInfo, 'Observation',obsName).
Use this syntax to create a stochastic actor
representation for a discrete action space.

The following table shows some typical uses of the

rlRepresentation objects to express table-

based critics with discrete observation and action spaces, and how to update your code with one of

the new objects instead.

Table-Based Representations: Not
Recommended

Table-Based Representations: Recommended

rep = rlRepresentation(tab), with tab
containing a value table consisting in a column
vector as long as the number of possible
observations.

rep =
rlValueRepresentation(tab,obsInfo). Use
this syntax to create a representation for a critic
that does not require action inputs, such as a
critic for an rlACAgent or rlPGAgent agent.




Table-Based Representations: Not
Recommended

Table-Based Representations: Recommended

rep = rlRepresentation(tab), with tab
containing a Q-value table with as many rows as
the possible observations and as many columns
as the possible actions.

rep =
rlQValueRepresentation(tab,obsInfo,act
Info). Use this syntax to create a single-output
state-action value representation for a critic that
takes both observation and action as input, such
as a critic for an rtDQNAgent or rlDDPGAgent
agent.

The following table shows some typical uses of the

rlRepresentation function to create critics and

actors which use a custom basis function, and how to update your code with one of the new objects
instead. In the recommended function calls, the first input argument is a two-element cell array
containing both the handle to the custom basis function and the initial weight vector or matrix.

Custom Basis Function-Based
Representations: Not Recommended

Custom Basis Function-Based
Representations: Recommended

rep =
rlRepresentation(basisFcn,W0,obsInfo),
where the basis function has only observations as
inputs and WO is a column vector.

rep =
rlValueRepresentation({basisFcn,W0},ob
sInfo). Use this syntax to create a
representation for a critic that does not require
action inputs, such as a critic for an rtACAgent
or rLPGAgent agent.

rep = rlRepresentation(basisFcn,Wo,
{obsInfo,actInfo}), where the basis function
has both observations and action as inputs and
WO is a column vector.

rep =
rlQValueRepresentation({basisFcn,W0},0
bsInfo,actInfo). Use this syntax to create a
single-output state-action value representation
for a critic that takes both observation and action
as input, such as a critic for an rtDQNAgent or
rl DDPGAgent agent.

rep =
rlRepresentation(basisFcn,W0,obsInfo,a
ctInfo), where the basis function has
observations as inputs and actions as outputs, WO
is a matrix, and actInfo defines a continuous
action space.

rep =
rlDeterministicActorRepresentation({ba
sisFcn,W0},obsInfo,actInfo). Use this
syntax to create a deterministic actor
representation for a continuous action space.

rep =
rlRepresentation(basisFcn,W0,obsInfo,a
ctInfo), where the basis function has
observations as inputs and actions as outputs, WO
is a matrix, and actInfo defines a discrete
action space.

rep =
rlStochasticActorRepresentation({basis
Fcn,W0},obsInfo,actInfo). Use this syntax
to create a deterministic actor representation for
a discrete action space.

Target update method settings for DQN agents have changed

Behavior change

Target update method settings for DQN agents have changed. The following changes require updates

to your code:
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* The TargetUpdateMethod option has been removed. Now, DQN agents determine the target
update method based on the TargetUpdateFrequency and TargetSmoothFactor option
values.

* The default value of TargetUpdateFrequency has changed from 4 to 1.

To use one of the following target update methods, set the TargetUpdateFrequency and
TargetSmoothFactor properties as indicated.

Update Method TargetUpdateFrequency TargetSmoothFactor
Smoothing 1 Less than 1

Periodic Greater than 1 1

Periodic smoothing (new Greater than 1 Less than 1

method in R2020a)

The default target update configuration, which is a smoothing update with a TargetSmoothFactor
value of 0.001, remains the same.

Update Code

This table shows some typical uses of rtDQNAgentOptions and how to update your code to use the
new option configuration.

Not Recommended Recommended

opt = rlDQNAgentOptions(...

'TargetUpdateMethod', "smoothing");

opt = rlDQNAgentOptions;

opt

= rlDQNAgentOptions(...

opt = rlDQNAgentOptions;

'TargetUpdateMethod', "periodic");

opt.TargetUpdateFrequency = 4;
opt.TargetSmoothFactor = 1;

opt = rlDQNAgentOptions;

opt.TargetUpdateMethod = "periodic";
opt.TargetUpdateFrequency = 5;

opt = rlDQNAgentOptions;
opt.TargetUpdateFrequency = 5;
opt.TargetSmoothFactor = 1;

Target update method settings for DDPG agents have changed

Behavior change

Target update method settings for DDPG agents have changed. The following changes require

updates to your code:

* The TargetUpdateMethod option has been removed. Now, DDPG agents determine the target
update method based on the TargetUpdateFrequency and TargetSmoothFactor option

values.

* The default value of TargetUpdateFrequency has changed from 4 to 1.

To use one of the following target update methods, set the TargetUpdateFrequency and
TargetSmoothFactor properties as indicated.

Update Method TargetUpdateFrequency TargetSmoothFactor
Smoothing 1 Less than 1
Periodic Greater than 1 1




Update Method

TargetUpdateFrequency

TargetSmoothFactor

Periodic smoothing (new
method in R2020a)

Greater than 1

Less than 1

The default target update configuration, which is a smoothing update with a TargetSmoothFactor

value of 0.001, remains the same.

Update Code

This table shows some typical uses of riDDPGAgentOptions and how to update your code to use the

new option configuration.

Not Recommended

Recommended

opt = rlDDPGAgentOptions(...
'TargetUpdateMethod', "smoothing");

opt = rlDDPGAgentOptions;

opt = rlDDPGAgentOptions(...
‘TargetUpdateMethod', "periodic");

opt = rlDDPGAgentOptions;
opt.TargetUpdateFrequency = 4;
opt.TargetSmoothFactor = 1;

opt = rlDDPGAgentOptions;
opt.TargetUpdateMethod = "periodic";
opt.TargetUpdateFrequency = 5;

opt = rlDDPGAgentOptions;
opt.TargetUpdateFrequency = 5;
opt.TargetSmoothFactor = 1;

getLearnableParameterValues is now getLearnableParameters
Behavior change

getLearnableParameterValues is now getLearnableParameters. To update your code, change
the function name from getlLearnableParameterValues to getLearnableParameters. The
syntaxes are equivalent.

setLearnableParameterValues is now setLearnableParameters
Behavior change

setlLearnableParameterValues is now setLearnableParameters. To update your code, change
the function name from setlLearnableParameterValues to setLearnableParameters. The
syntaxes are equivalent.
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Parallel Agent Simulation: Verify trained policies by running multiple
agent simulations in parallel

You can now run multiple agent simulations in parallel. If you have Parallel Computing Toolbox™

software, you can run parallel simulations on multicore computers. If you have MATLAB® Parallel
Server™ software, you can run parallel simulations on computer clusters or cloud resources. For
more information, see rlSimulationOptions.

PPO Agent: Train policies using proximal policy optimization algorithm
for improved training stability

You can now train policies using proximal policy optimization (PPO). This algorithm is a type of policy
gradient training that alternates between sampling data through environmental interaction and
optimizing a clipped surrogate objective function using stochastic gradient descent. The clipped
surrogate objective function improves training stability by limiting the size of the policy change at
each step.

For more information on PPO agents, see Proximal Policy Optimization Agents.

New Examples: Train reinforcement learning policies for applications
such as robotics, automated driving, and control design

The following new examples show how to train policies for robotics, automated driving, and control
design:

* Quadruped Robot Locomotion Using DDPG Agent
* Imitate MPC Controller for Lane Keep Assist


https://www.mathworks.com/help/releases/R2019b/reinforcement-learning/ref/rlsimulationoptions.html
https://www.mathworks.com/help/releases/R2019b/reinforcement-learning/ug/ppo-agents.html
https://www.mathworks.com/help/releases/R2019b/reinforcement-learning/ug/quadruped-robot-locomotion-using-ddpg-gent.html
https://www.mathworks.com/help/releases/R2019b/reinforcement-learning/ug/imitate-mpc-controller-for-lane-keeping-assist.html
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Version: 1.0
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Reinforcement Learning Algorithms: Train policies using DQN, DDPG,
A2C, and other algorithms

Using Reinforcement Learning Toolbox™ software, you can train policies using several standard
reinforcement learning algorithms. You can create agents to train policies for the following:

* Q-learning

* SARSA

* Deep Q-networks (DQN)

* Deep deterministic policy gradients (DDPG)

* Policy gradient (PG)

* Advantage actor-critic (A2C)

You can also train policies using other algorithms by creating a custom agent.

For more information on creating and training agents, see Reinforcement Learning Agents and Train
Reinforcement Learning Agents.

Environment Modeling: Create MATLAB and Simulink environment
models and provide observation and reward signals for training
policies

In a reinforcement learning scenario, the environment models the dynamics and system behavior with
which the agent interacts. To define an environment model, you specify the following:

* Action and observation signals that the agent uses to interact with the environment.

* Reward signal that the agent uses to measure its success.
* Environment dynamic behavior.

You can model your environment using MATLAB and Simulink®. For more information, see Create
MATLAB Environments for Reinforcement Learning and Create Simulink Environments for
Reinforcement Learning

Policy and Value Function Representation: Parameterize policies using
deep neural networks, linear basis functions, and look-up tables

Reinforcement Learning Toolbox software provides objects for actor and critic representations. The
actor represents the policy that selects the action to take. The critic represents the value function
that estimates the value of the current policy. Depending on your application and selected agent, you
can define policy and value functions using deep neural networks, linear basis functions, or look-up
tables. For more information, see Create Policy and Value Function Representations.


https://www.mathworks.com/help/releases/R2019a/reinforcement-learning/ug/create-agents-for-reinforcement-learning.html
https://www.mathworks.com/help/releases/R2019a/reinforcement-learning/ug/train-reinforcement-learning-agents.html
https://www.mathworks.com/help/releases/R2019a/reinforcement-learning/ug/train-reinforcement-learning-agents.html
https://www.mathworks.com/help/releases/R2019a/reinforcement-learning/ug/create-matlab-environments-for-reinforcement-learning.html
https://www.mathworks.com/help/releases/R2019a/reinforcement-learning/ug/create-matlab-environments-for-reinforcement-learning.html
https://www.mathworks.com/help/releases/R2019a/reinforcement-learning/ug/create-simulink-environments-for-reinforcement-learning.html
https://www.mathworks.com/help/releases/R2019a/reinforcement-learning/ug/create-simulink-environments-for-reinforcement-learning.html
https://www.mathworks.com/help/releases/R2019a/reinforcement-learning/ug/create-policy-and-value-function-representations.html

Interoperability: Import policies from Keras and the ONNX model
format

You can import existing deep neural network policies and value functions from other deep learning
frameworks, such as Keras and the ONNX™ format. For more information, see Import Policy and
Value Function Representations.

Training Acceleration: Parallelize environment simulations and
gradient calculations on GPUs and multicore CPUs for policy training

You can accelerate policy training by running parallel training simulations. If you have:

* Parallel Computing Toolbox software, you can run parallel simulations on multicore computers

* MATLAB Parallel Server software, you can run parallel simulations on computer clusters or cloud
resources

You can also speed up deep neural network training and inference with high-performance NVIDIA®
GPUs.

For more information, see Train Reinforcement Learning Agents.

Code Generation: Deploy trained policies to embedded devices
through automatic code generation for CPUs and GPUs

Once you have trained your reinforcement learning policy, you can generate code for policy
deployment. You can generate optimized CUDA® code using GPU Coder™ and C/C++ code using
MATLAB Coder™.

You can deploy trained policies as C/C++ shared libraries, Microsoft® .NET Frameworkassemblies,
Java® classes, and Python® packages.

For more information, see Deploy Trained Reinforcement Learning Policies.

Reference Examples: Implement controllers using reinforcement
learning for automated driving and robotics applications

This release includes the following examples on training reinforcement learning policies for robotics
and automated driving applications:

* Train DDPG Agent to Control Flying Robot

* Train Biped Robot to Walk Using DDPG Agent

* Train DQN Agent for Lane Keeping Assist

* Train DDPG Agent for Adaptive Cruise Control

* Train DDPG Agent for Path Following Control
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https://www.mathworks.com/help/releases/R2019a/reinforcement-learning/ug/import-existing-policies-for-training-and-simulation.html
https://www.mathworks.com/help/releases/R2019a/reinforcement-learning/ug/import-existing-policies-for-training-and-simulation.html
https://www.mathworks.com/help/releases/R2019a/reinforcement-learning/ug/train-reinforcement-learning-agents.html
https://www.mathworks.com/help/releases/R2019a/reinforcement-learning/ug/deploy-trained-reinforcement-learning-agents.html
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